OKLAHOMA STATE UNIVERSITY

SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING SCHOOL OF MECHANICALANDAEROSPACE ENGINEERING

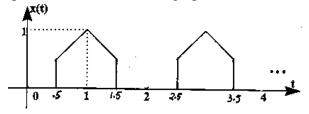
ECEN 4413/MAE 4053 Automatic Control Systems Spring 2010

Midterm Exam #1

Choose any four out of five problems. Please specify which four listed below to be graded:

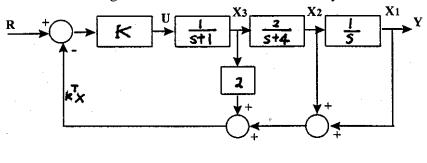
____; ____; ____; ____; There is a bonus problem at the end.

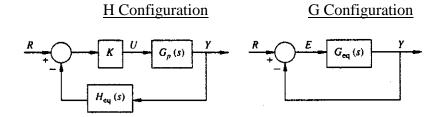
Name : _____

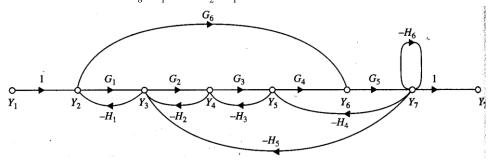

E-Mail Address:_____

<u>Problem 1</u>: Find the Inverse Laplace transforms of

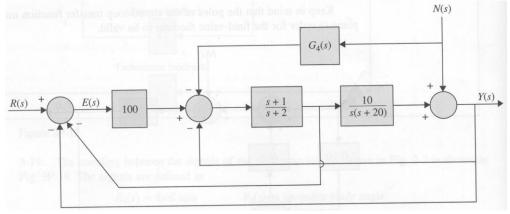
$$\int_{s}^{\infty} e^{-4\xi} \ln \frac{\xi+a}{\xi+b} d\xi.$$


Problem 2:


Determine the Laplace transform of the following signal, x(t), with five periods (only two periods are shown in the graph).


Problem 3:

Using *block diagram reduction technique* to rearrange the following block diagram into the equivalent *H* and *G* configurations of the feedback control system shown below.


<u>Problem 4</u>: Find the transfer functions Y_8 / Y_1 and Y_2 / Y_1 of the SFG shown below.

Problem 5:

The block diagram of a feedback control system is shown below.

- a) Derive the transfer functions of $\left. \frac{Y(s)}{R(s)} \right|_{N=0}, \left. \frac{Y(s)}{N(s)} \right|_{R=0}$.
- b) The controller with the transfer function $G_4(s)$ is for the reduction of the effect of the noise N(s). Find $G_4(s)$ so that the output Y(s) is totally independent of N(s).

Bonus Problem (5 points):

What you envision how students will take the exams in the future? Please provide sufficient arguments to justify your points.